Artificial Intelligence powered Multifunctional Material Design
Nachhaltige Energiespeicher entwickeln und zugleich neue Materialien für die regenerative Medizin herstellen – mit den richtigen supramolekularen chemischen Verbindungen ist beides möglich. Das TUM Innovation Network for Artificial Intelligence powered Multifunctional Material Design (ARTEMIS) verfolgt das Ziel, derartige Moleküle gezielt zu identifizieren und daraus einen einzigartigen Werkzeugkasten für verschiedene technische Anwendungen zu entwickeln, und zwar mithilfe Maschinellen Lernens und Additiver Fertigung.
Mögliche Anwendungen reichen von der Elektrokatalyse in der Wasserstoffproduktion über die gezielte Regeneration von Gewebe bis hin zu ‚smarten‘ Beschichtungen auf Implantaten. Die datengetriebene Vorhersage bietet dabei völlig neue Möglichkeiten, um Entdeckung, Synthese und Design neuer multifunktionaler Materialien voranzutreiben, genau wie für das Hochskalieren und die Produktion neuer technischer Anwendungen.
Unser Team
- Prof. Dr. Angela Casini (Medizinische und Bioorganische Chemie)
- Prof. Dr. Alessio Gagliardi (Simulation von Nanosystemen für Energieumwandlungen)
- Prof. Dr. Aliaksandr S. Bandarenka (Physik der Energiewandlung und -speicherung)
- Prof. Dr. Roland A. Fischer (Anorganische und Metallorganische Chemie)
- Prof. Dr. Stephan Günnemann (Data Analytics and Machine Learning)
- Prof. Phaedon-Stelios Koutsourelakis, Ph.D. (Kontinuumsmechanik)
- Prof. Dr. Petra Mela (Medizintechnische Materialien und Implantate)
- Prof. Dr. Bernhard Rieger (Makromolekulare Chemie)
- Prof. Dr. Bernhard Wolfrum (Neuroelektronik)
Promotionen
- Electrochemistry based sensor array with integration of MOFs (Beatrice De Chiara)
- Identifying a MOF Platform for Applications in Electrochemistry and Regenerative Medicine (Sarah Dummert)
- Graph Neural Networks for Quantum Chemistry (Nicholas Gao)
- Development and characterization of biohybrid cardiovascular implants (Salma Mansi)
- Electrocatalysis Functional Nanomaterials (Peter Schneider)
- Data-driven collective variables discovery for advance sampling using metadynamics (Gohar Ali Siddiqui)
- Computational methods and machine learning to optimize drug discovery and materials design (Julia Stebani)
- Data-driven modelling of coarse-grained molecular dynamics and generative modelling (Maximilian Stupp)
- Poly(vinylphosphonate)-based Therapeutics (Philipp Weingarten)
Publikationen
- B. Thakur, V.V. Karve, D.T. Sun, A.L. Semrau, L.J.K. Weiß, L. Grob, R.A. Fischer, W.L. Queen, B. Wolfrum: An Investigation into the Intrinsic Peroxidase‐Like Activity of Fe-MOFs and Fe‐MOFs/Polymer Composites. Advanced Materials Technologies, 2021, 6 (5), 2001048.
- S. Zips, L. Hiendlmeier, L.J.K. Weiß, H. Url, T.F. Teshima, R. Schmid, M. Eblenkamp, P. Mela, B. Wolfrum*: Biocompatible, Flexible, and Oxygen-Permeable Silicone-Hydrogel Material for Stereolithographic Printing of Microfluidic Lab-On-A-Chip and Cell-Culture Devices. ACS Applied Polymer Materials, 2021, 3 (1), 243-258. A Machine Learning Approach to Analyze the Surface Properties of Biological Materials.
- C. Rickert, E.N. Hayta, D.M. Selle, I. Kouroudis, M. Harth, A. Gagliardi, O. Lieleg. ACS Biomaterials Science & Engineering, 2021, 7, 4614–4625.
- Thakur, B.; Karve, V. V.; Sun, D. T.; Semrau, A. L.; Weiss, L. J. K.; Grob, L.; Fischer, R. A.; Queen, W. L.; Wolfrum, B., An Investigation into the Intrinsic Peroxidase-Like Activity of Fe-MOFs and Fe-MOFs/Polymer Composites. Advanced Materials Technologies 2021, 6 (5).
- L. Katzenmeier, M. Gößwein, A. Gagliardi, and A. S. Bandarenka. Modeling of Space-Charge Layers in Solid-State Electrolytes : A Kinetic Monte Carlo Approach and Its Validation. J. Phys. Chem. C 2022, 126, 26, 10900-10909.
- F. Mayr, M. Harth, I. Kouroudis, M. Rinderle, and A. Gagliardi. Machine Learning and Optoelectronic Materials Discovery: A Growing Synergy. J. Phys. Chem. Lett. 2022, 13, 8, 1940–1951.
- Bio-Based and Bio-Inspired Adhesives from Animals and Plants for Biomedical Applications. T.M. Lutz, C. Kimna, A. Casini, O. Lieleg, Materials Today Bio, 2022, 13, 100203
- Materials from Cyclodextrin Metal-Organic Frameworks: Recent Developments and Applications. S. V. Dummert, H. Saini, Z. Hussain, K.Yadava, J.Kolleboyina, A. Casini, R. A. Fischer, ChemSocRev, 2022, 51, 5175–5213.
- Kollmannsberger, K. L.; Kronthaler, L.; Jinschek, J. R.; Fischer, R. A., Defined metal atom aggregates precisely incorporated into metal-organic frameworks. Chemical Society Reviews 2022, 51 (24), 9933-9959.
- Hussain, M. Z.; Yang, Z. X.; van der Linden, B.; Heinz, W. R.; Bahri, M.; Ersen, O.; Jia, Q. L.; Fischer, R. A.; Zhu, Y. Q.; Xia, Y. D., MOF-Derived Multi-heterostructured Composites for Enhanced Photocatalytic Hydrogen Evolution: Deciphering the Roles of Different Components. Energy & Fuels 2022, 36 (19), 12212-12225.
- Kaussler, C.; Wragg, D.; Schmidt, C.; Moreno-Alcantar, G.; Jandl, C.; Stephan, J.; Fischer, R. A.; Leoni, S.; Casini, A.; Bonsignore, R., “Dynamical Docking” of Cyclic Dinuclear Au(I) Bis-N-heterocyclic Complexes Facilitates Their Binding to GQuadruplexes. Inorganic Chemistry 2022, 61 (50), 20405-20423.
- Hussain, M. Z.; Grossmann, P. F.; Kohler, F.; Kratky, T.; Kronthaler, L.; van der Linden, B.; Rodewald, K.; Rieger, B.; Fischer, R. A.; Xia, Y. D., 3D-Printed Metal-Organic Framework-Derived Composites for Enhanced Photocatalytic Hydrogen Generation. Solar Rrl 2022, 6 (10).
- Machine Learning Approaches for Biomolecular, Biophysical and Biomaterials Research. C. Rickert, O. Lieleg, Biophysics Rev. 2022, 3, 021306.
- PET imaging of self-assembled 18F-labelled Pd2L4 metallacages for anticancer drug delivery, R. Cosialls, C. Simo', S. Borros, V. Gçomez-Vallejo, C. Schmidt, J. Llop, A. B. Cuenca, A. Casini, Chemistry Eur. J. 2022, 28, e202201575.
- Alkali metal cations change the hydrogen evolution reaction mechanisms at Ptelectrodes in alkaline media, Y. Taji, A. Zagalskaya, I. Evazzade, S. Watzele, K.-T. Song, S. Xue, C. Schott, B. Garlyyev, V. Alexandrov, E. Gubanova, A.S. Bandarenka, 2022, Nano Materials Science in press.
- Self-supervised optimization of random material microstructures in the small-data regime, M. Rixner, P-S Koutsourelakis, npj Computational Materials, Volume 8, 2022.
- S. Thomas, F. Mayr and A. Gagliardi. Adsorption and Sensing Properties of SF6 Decomposed Gases on Mg-MOF-74. Solid State Communications, 2023, 363, 115120.
- G. Moreno-Alcantar, A. Casini, Bioinorganic Supramolecular Coordination Complexes and Their Biomedical Applications, FEBS Letters, 2023, 597, 191-202.
- T. Tabish, M.Z. Hussain, R.A. Fischer, A. Casini, Mitochondria-targeted metal-organic frameworks for cancer treatment, Materials Today, 2023, accepted. (03.04.23), Ms#MATTOD-D-22-01279R2.
- S. Thomas, F. Mayr, A. Kulangara Madam and A. Gagliardi, Machine learning and DFT investigation of CO, CO2 and CH4 adsorption on pristine and defective two-dimensional magnesene, Physical Chemistry Chemical Physics, 2023, in press.
- N. Gao, S. Günnemann, Ab-initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions, ICLR 2022.
- N. Franco, T. Wollschläger, N. Gao, J.M. Lorenz, S. Günnemann, Quantum Robustness Verification: A Hybrid Quantum-Classical Neural Network Certification Algorithm, IEEE Conference on Quantum Computing and Engineering 2022.
- N. Gao, S. Günnemann, Sampling-free Inference for Ab-Initio Potential Energy Surface Networks, ICLR 2023.
- Kilian Maria Arthur Mueller, Salma Mansi and Petra Mela, Recent Advances in Melt Electrowriting for Cardiovascular Applications. (chapter book) 2023.
- G. Yesilbas, C.Y. Chou, A.S. Bandarenka. A physical impedance model of lithium intercalation into graphite electrodes for a coin-cell assembly // ChemElectroChem 10 (2023) 202300270.
- L. Katzenmeier,(1) M. Gößwein,(1) L. Carstensen, J. Sterzinger, M. Ederer, P. Müller-Buschbaum, A. Gagliardi, A.S. Bandarenka. Mass transport and charge transfer through an electrified interface between metallic lithium and solid-state electrolytes // Communications Chemistry 6 (2023) 124.
- X. Ma, D. Zheng, S. Hou, S. Mukherjee, R. Khare, G. Gao, Q. Ai, B. Garlyyev, W. Li, M. Koch, J. Mink, Y. Shao-Horn, J. Warnan, A.S. Bandarenka, R. Fischer. Structure-activity relationships in Ni- carboxylate-type metal-organic frameworks’ metamorphosis for oxygen evolution reaction // ACS Catalysis 13 (2023) 7587–7596.
- Y. Taji, A. Zagalskaya, I. Evazzade, S. Watzele, K.-T. Song, S. Xue, C. Schott, B. Garlyyev, V. Alexandrov, E. Gubanova, A.S. Bandarenka. Alkali metal cations change the hydrogen evolution reaction mechanisms at Pt electrodes in alkaline media // Nano Materials Science IF=9.9 (2023) accepted.
- A. Kosmala, J. Gasteiger, N.Gao, S. Günnemann, "Ewald-based Long-Range Message Passing for Molecular Graphs", International Conference on Machine Learning, 2023.
- T. Wollschläger, N. Gao, B. Charpentier, A. Ketata, S. Günnemann "Uncertainty Estimation for Molecules: Desiderata and Methods", International Conference on Machine Learning, 2023.
- N. Gao, S. Günnemann "Generalizing Neural Wave Functions", International Conference on Machine Learning, 2023.
- N. Gao, S. Günnemann "Sampling-free Inference for Ab-Initio Potential Energy Surface Networks", International Conference on Learning Representations, 2023.
- L.-S. Hornberger, P. Weingarten, P. L. Lange, T. Schleid, F. Adams, Eur. Polym. J. 2023, 199, 112449.
- Salma Mansi, Sarah V. Dummert, Geoffrey J. Topping, Mian Zahid Hussain, Carolin Rickert, Kilian M. A. Mueller, Tim Kratky, Martin Elsner, Angela Casini, Franz Schilling, Roland A. Fischer, Oliver Lieleg, and Petra Mela. Introducing Metal–Organic Frameworks to Melt Electrowriting: Multifunctional Scaffolds with Controlled Microarchitecture for Tissue Engineering Applications. Adv. Funct. Mater. 2023, 2304907.
- Ioannis Kouroudis, Manuel Gößwein*, and Alessio Gagliardi "Utilizing Data-Driven Optimization to Automate the Parametrization of Kinetic Monte Carlo Models", . Phys. Chem. A, 127, 28, 5967–5978, 2023.
- Carola Lampe, Ioannis Kouroudis, Milan Harth, Stefan Martin, Alessio Gagliardi, Alexander S. Urban, "Rapid Data-Efficient Optimization of Perovskite Nanocrystal Syntheses through Machine Learning Algorithm Fusion" Advanced Materials Volume35, Issue16, 2208772, 2023.
- Gohar Ali Siddiqui, Julia A. Stebani, Darren Wragg, Phaedon-Stelios Koutsourelakis, Angela Casini, Alessio Gagliardi "Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: a Case Study" Chemistry a European Journal, Volume29, Issue62, e202302375, 2023.
- Kathrin L. Kollmannsberger, Poonam, Cristiana Cesari, Rachit Khare, Tim Kratky, Maxime Boniface, Ondřej Tomanec, Jan Michalička, Edoardo Mosconi, Alessio Gagliardi, Sebastian Günther, Waldemar Kaiser, Thomas Lunkenbein, Stefano Zacchini, Julien Warnan, and Roland A. Fischer "Mechanistic Insights into ZIF-8 Encapsulation of Atom-Precise Pt(M) Carbonyl Clusters" Chemistry of Materials 35 (14), 5475-5486, 2023.